On Algebraic Classiication of Quasi-exactly Solvable Matrix Models
نویسنده
چکیده
We suggest a generalization of the Lie algebraic approach for constructing quasi-exactly solvable one-dimensional Schrr odinger equations which is due to Shifman and Turbiner in order to include into consideration matrix models. This generalization is based on representations of Lie algebras by rst-order matrix diierential operators. We have classiied inequivalent representations of the Lie algebras of the dimension up to three by rst-order matrix diierential operators in one variable. Next we describe invariant nite-dimensional sub-spaces of the representation spaces of the one-, two-dimensional Lie algebras and of the algebra sl(2; R). These results enable constructing multi-parameter families of rst-and second-order quasi-exactly solvable models. In particular, we have obtained two classes of quasi-exactly solvable matrix Schrr odinger equations.
منابع مشابه
On algebraic classification of quasi-exactly solvable matrix models
We suggest a generalization of the Lie algebraic approach for constructing quasi-exactly solvable one-dimensional Schrödinger equations which is due to Shifman and Turbiner in order to include into consideration matrix models. This generalization is based on representations of Lie algebras by first-order matrix differential operators. We have classified inequivalent representations of the Lie a...
متن کاملv 1 1 0 O ct 1 99 5 Quasi - exactly solvable problems and random matrix theory
There exists an exact relationship between the quasi-exactly solvable problems of quantum mechanics and models of square and rectangular random complex matrices. This relationship enables one to reduce the problem of constructing topological (1/N) expansions in random matrix models to the problem of constructing semiclassical expansions for observ-ables in quasi-exactly solvable problems. Lie a...
متن کاملX iv : h ep - t h / 98 10 04 5 v 1 7 O ct 1 99 8 TPI - MINN - 98 / 04 Quasi - Exactly Solvable Models with Spin - Orbital Interaction
First examples of quasi-exactly solvable models describing spin-orbital interaction are constructed. In contrast with other examples of matrix quasi-exactly solvable models discussed in the literature up to now, our models admit infinite (but still incomplete) sets of exact (algebraic) solutions. The hamiltonians of these models are hermitian operators of the form H = −∆ +V1(r)+ (s · l)V2(r)+ (...
متن کاملQuasi-exactly solvable problems and random matrix theory
There exists an exact relationship between the quasi-exactly solvable problems of quantum mechanics and models of square and rectangular random complex matrices. This relationship enables one to reduce the problem of constructing topological (1/N) expansions in random matrix models to the problem of constructing semiclassical expansions for observables in quasi-exactly solvable problems. Lie al...
متن کاملOn quasi-exactly solvable matrix models
An efficient procedure for constructing quasi-exactly solvable matrix models is suggested. It is based on the fact that the representation spaces of representations of the algebra sl(2,R) within the class of first-order matrix differential operators contain finite dimensional invariant subspaces. The Lie-algebraic approach to constructing quasi-exactly solvable one-dimensional stationary Schröd...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997